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Abstract We report on the progress in the development and application of a coupled boundary
element/finite volume method temperature-forward/flux-back algorithm developed to solve
conjugate heat transfer arising in 3D film-cooled turbine blades. We adopt a loosely coupled
strategy where each set of field equations is solved to provide boundary conditions for the other.
Iteration is carried out until interfacial continuity of temperature and heat flux is enforced. The
NASA-Glenn explicit finite volume Navier-Stokes code Glenn-HT is coupled to a 3D BEM
steady-state heat conduction solver. Results from a CHT simulation of a 3D film-cooled blade
section are compared with those obtained from the standard two temperature model, revealing
that a significant difference in the level and distribution of metal temperatures is found between the
two. Finally, current developments of an iterative strategy accommodating large numbers of
unknowns by a domain decomposition approach is presented. An iterative scheme is developed
along with a physically-based initial guess and a coarse grid solution to provide a good starting
point for the iteration. Results from a 3D simulation show the process that converges efficiently and
offers substantial computational and storage savings.

1. Introduction
Engineering analysis of complex mechanical devices such as turbomachines
requires an ever-increasing fidelity in numerical models upon which designers
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rely in their efforts to attain demanding specifications placed on the efficiency
and durability of modern machinery. Consequently, the trend in computational
mechanics is to adopt coupled-field analysis to obtain computational models,
which attempt to better mimic the physics under consideration (Kassab and
Aliabadi, 2001). The coupled-field problem, which we address in this paper is
conjugate heat transfer (CHT), i.e. the coupling of convective heat transfer
external to the solid body of a thermal component coupled to conduction heat
transfer within the solid body of that component (Figure 1). CHT thus applies
to any thermal system in which the multi-mode convective/conduction heat
transfer is of particular importance to thermal design, and thus CHT in most
instances arises naturally where the external and internal temperature fields
are coupled.

Conjugacy is often ignored in most analytical solutions and numerical
simulations. For instance, it is in common practice in the analysis of
turbomachinery (Heidmann et al., 2002) to carry out separate flow and heat
conduction analyses. Heat transfer coefficient as well as film effectiveness
values are predicted using two independent external flow solutions, each
computed by imposing a different constant wall temperature at the surfaces of
the turbine blade exposed to hot gases and film cooling air. The film
effectiveness determines the reference temperature for the computed film
coefficients. In turn, these values are used to impose convective boundary
conditions to a conduction solver to obtain predicted metal temperatures. As
shown in the example section of this paper, the shortcomings of this approach,
which neglects the effects of the wall temperature distribution on the
development of the thermal boundary layer are readily overcome by a CHT
analysis, in which the coupled nature of the field problem is explicitly taken
into account in the analysis.

There are two basic approaches to solve the coupled field problems. In the
first approach, a direct coupling is implemented in which different fields are
solved simultaneously in one large set of equations. Direct coupling is mostly
applicable for problems where time accuracy is critical, for instance, in
aero-elasticity applications where the timescale of the fluid motion is of the
same order as the structural modal frequency. However, this approach suffers a
major disadvantage due to mismatch in the structure of the coefficient matrices
arising from boundary element method (BEM), finite element method (FEM)
and/or finite volume method (FVM) solvers. That is, given the fully populated
nature of the BEM coefficient matrix, the direct coupling approach would

Figure 1.
CHT problem: external
convective heat transfer
coupled to heat
conduction within the
solid
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severely degrade the numerical efficiency of the solution by directly
incorporating the fully populated BEM equations into the sparsely banded
FEM or FVM equations. A second approach which may be followed is a loose
coupling strategy where each set of field equations is solved separately to
produce boundary conditions for the other. The equations are solved in turn
until an iterated convergence criterion, namely continuity of temperature and
heat flux, is met at the fluid-solid interface. The loose coupling strategy is
particularly attractive when coupling auxiliary field equations to
computational fluid dynamics codes as the structure of neither solver
interferes in the solution process.

Several approaches can be taken to solve the coupled field problems and are
mostly based on either FEM or FVM or a combination of these two field
solvers. Examples of such loosely coupled approaches applied to a variety of
CHT problems ranging from engine block models to turbomachinery can be
found in Bohn et al. (1997, 1999), Comini et al. (1993), Hahn et al. (2000), Kao and
Liou (1997), Patankar (1978), Shyy and Burke (1994), and in Tayala et al. (2000)
where multi-disciplinary optimization is considered for CHT modelled turbine
airfoil designs. Hassan et al. (1998) developed a conjugate algorithm, which
loosely couples a FVM-based hypersonic CFD code to an FEM heat conduction
solver in an effort to predict ablation profiles in hypersonic re-entry vehicles.
Here, the structured grid of the flow solver is interfaced with the unstructured
grid of heat conduction solvers in a quasi-transient CHT solution tracing the
re-entry vehicle trajectory. Issues in loosely coupled analysis of the elastic
response of the solid structures perturbed by the external flowfields arising in
aero-elastic problems can be found in Brown (1997) and Dowell and Hall (2001).
In either case, the coupled field solution requires complete meshing of both
fluid and solid regions while enforcing solid/fluid interface continuity of fluxes
and temperatures, in the case of CHT analysis, or displacement and traction, in
the case of aero-elasticity analysis.

A different approach was taken by Li and Kassab (1994a, b) and Ye et al.
(1998), to develop a BEM-based CHT algorithm thereby avoiding meshing of
the solid region for the conduction solution. The method couples the BEM to a
FVM Navier-Stokes solver and was applied to solve the two-dimensional
steady-state compressible subsonic CHT problems over the cooled and
uncooled turbine blades. The conduction problem requires solution of the
Laplace equation for the temperature (or the Kirchhoff transform in the case of
temperature dependent conductivity), and, as such, only requires a boundary
discretization thereby eliminating the onerous task of grid generation within
the intricate regions of the solid. The boundary discretization utilized to
generate the computational grid for the external flow-field can be considerably
coarsened to provide the boundary discretization required for the BEM. Most
modern grid generators used in the computational fluid dynamics, for instance,
GridProe (Program Development Corporation, 1997), the topology-based
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algebraic grid generator used in the examples presented in this paper, allow the
multigrid option. Several levels of coarse discretization can thus be readily
obtained. Furthermore, the BEM/FVM methods offer the additional advantage
of providing heat flux values and this stems from the fact that nodal unknowns
which appear in the BEM are the surface temperatures and heat fluxes.
Consequently, solid/fluid interfacial heat fluxes that are required to enforce
continuity in the CHT problems are naturally provided by the BEM conduction
analysis. This is in sharp contrast to the domain meshing methods, such as
FVM and FEM where heat fluxes are computed by the numerical
differentiation in a post-processing stage. He et al. (1995a, b) adopted the
BEM/FVM approach in the further studies of CHT in incompressible flow in
ducts subjected to a constant wall temperature and constant heat flux
boundary conditions. Kontinos (1997) also adopted the BEM/FVM coupling
algorithm to solve the CHT over metallic thermal protection panels at the
leading edge of the X-33 in a Mach 15 hypersonic flow regime. Rahaim et al.
(1997, 2000) adopted a BEM/FVM strategy to solve the time-accurate CHT
problems for supersonic compressible flow over a 2D wedged, and they present
experimental validation of this CHT solver. In their studies, the dual reciprocity
BEM (Partridge et al., 1992) was used for transient heat conduction, while a
cell-centered FVM was chosen to resolve the compressible turbulent
Navier-Stokes equations.

In this paper, we report on the progress in the development and application
of a BEM-based temperature forward/flux back (TFFB) coupling algorithm
developed to solve the CHT arising in the 3D film-cooled turbine blades. The
NASA-Glenn turbomachinery Navier-Stokes code Glenn-HT is coupled to a 3D
BEM steady-state heat conduction solver. The steady-state solution is sought
by marching in time until dependent variables reach their steady-state values,
and, as such, intermediate temporal solutions are not physically meaningful. In
this mode of solving the steady-state problem, time-marching can be viewed as a
relaxation scheme, and local time-stepping and implicit residual smoothing are
used to accelerate convergence. The steady heat conduction equation reduces to
the Laplace equation, and it is solved using the BEM with isoparametric bilinear
discontinuous elements. We chose to employ discontinuous elements as they
provide high levels of accuracy in computed heat flux values especially at sharp
corner regions where first kind boundary conditions are imposed without
resorting to special treatment of corner points required by continuous elements
in particular, when first kind boundary conditions are imposed (Kane, 1994;
Kassab and Nordlund, 1994). In this application, sharp corners occur in many
locations and first kind boundary conditions are imposed on all metal surfaces.
Moreover, the use of discontinuous elements throughout the BEM model
eliminates much of the overhead associated with continuous elements, in
particular, there is no need to generate, store, or access a connectivity matrix
when using the discontinuous elements.
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In order to resolve the flow physics, the CFD grid must be clustered in many
regions. The BEM grid does not require such fine clustering and consequently,
the two grids are of quite different coarsenesses. The details of the interpolation
used to exchange nodal temperature and flux information from the disparate
CFD and BEM grids are presented. Results from a CHT numerical simulation
of a 3D film-cooled blade section are presented and results are compared with
those obtained from the standard approach of a two-temperature model.
Significant difference in the level and distribution of the metal temperature is
found between the two-temperature and CHT models. Finally, in order to
address the large number of unknowns appearing in the 3D BEM model,
current developments of a strategy of artificial subsectioning of the blade are
presented. Here, the approach is to subsection the blade in the spanwise
direction. A specially tailored iterative scheme is developed to solve the
conduction problem with each subsection BEM problem solved using a direct
LU solver. A physically based initial guess is used to provide a good starting
point for the iterative algorithm. Results from the 2D and 3D simulations show
the process converging efficiently and offers a substantial computational and
storage savings.

2. Governing equations
We first present the governing equations for the coupled field problem under
consideration. The CHT problems arising in turbomachinery involves external
flow-fields that are generally compressible and turbulent, and these are
governed by the compressible Navier-Stokes equations supplemented by a
turbulence model. Heat transfer within the blade is governed by the heat
conduction equation. Linear as well as non-linear options are considered.
However, fluid flows within the internal structures to the blade, such as film
cooling holes and channels, are usually of low-speed and are incompressible.
Consequently, density-based compressible codes tend to experience numerical
difficulties in modeling such flows, unless low Mach number pre-conditioning
is implemented (Turkel, 1987, 1993). The Glenn-HT code is specialized to
turbomachinery applications for which air is the working fluid and is modelled
as an ideal gas.

2.1 Governing equations for the flow-field
The governing equations for the flow-field are the compressible Navier-Stokes
equations, which describe the conservation of mass, momentum and energy.
These can be written in integral form as

Z
V

›
~

W

›t
dVþ

Z
G

ð
~
F 2

~
TÞ · n̂ dG ¼

Z
V~

S dV ð1Þ
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where V denotes the volume, G denotes the surface bounded by the volume V,
and n̂ is the outward-drawn normal. The conserved variables are contained in
the vector

~
W ¼ ðr; ru; rv; rw; re; rk; rvÞ; where, r, u, v, w, e, k, v are the

density, the velocity components in x-, y-, and z-directions, and the specific total
energy. The kinetic energy of turbulent fluctuations is denoted by k and the
specific dissipation rate is denoted by v and both appear in the two equation –
Wilcox turbulence model (Wilcox, 1993, 1994) with modifications by Menter
(1993) and Chima (1996) as implemented in Glenn-HT. The vectors

~
F and

~
T are

convective and diffusive fluxes, respectively,
~
S is a vector containing all terms

arising from the use of a non-inertial reference frame as well as in the
production and dissipation of turbulent quantities. The working fluid is air,
and it is modeled as an ideal gas. A rotating frame of reference can be adopted
for the modeling of rotating flows. The effective viscosity is given by

m ¼ ml þ mt ð2Þ

where mt ¼ rk=v: The thermal conductivity of the fluid is then computed by a
Prandtl number analogy where

kf ¼
g

g2 1

ml

Prl

þ
mt

Prt

� �
ð3Þ

where Pr is the Prandtl number and g is the specific heat ratio. The subscripts l
and t refer to laminar and turbulent values, respectively.

2.2 The governing equations of the heat conduction field
In the steady-state CHT solutions obtained in this paper, the NS equations are
solved to steady-state by a time marching scheme converging towards
steady-state. A steady heat conduction analysis is carried out using the BEM at
each time level chosen for the external flow-field and internal conduction field
to interact in the iterative process. As such, the governing equation under
consideration is

7 · ½kðTsÞ7Ts� ¼ 0 ð4Þ

where Ts denotes the temperature of the solid, and ks is the thermal
conductivity of the solid material. If the thermal conductivity is taken as
constant, then the above equation reduces to the Laplace equation for the
temperature. When the thermal conductivity variation with temperature is an
important concern, the nonlinearity in the steady-state heat conduction
equation can readily be removed by introducing the classical Kirchhoff
transform, U(T ) ( Azevedo and Wrobel, 1988; Bialecki and Nhalik, 1989;
Kassab and Wrobel, 2000), which is defined as

U ðTÞ ¼
1

ko

Z T

To

ksðTÞ dT ð5Þ

HFF
13,5

586



where To is the reference temperature and ko is the reference thermal
conductivity. The transform and its inverse are readily evaluated, either
analytically or numerically, and the heat conduction equation transforms to a
Laplace equation for the transform parameter U(T ). The heat conduction
equation thus reduces to the Laplace equation in any case, and this equation is
readily solved by the BEM.

In the conjugate problem, continuity of temperature and heat flux at the
blade surface, G, must be satisfied:

Tf ¼ Ts

kf
›Tf

›n
¼ 2ks

›Ts

›n

ð6Þ

Here, Tf is the temperature computed from the N-S solution, Ts is the
temperature within the solid which is computed from the BEM solution, and
›/›n denotes the normal derivative. Both first kind and second kind boundary
conditions transform linearly in the case of temperature-dependent
conductivity. In such a case, the fluid temperature is used to evaluate the
Kirchhoff transform and this used a boundary condition of the first kind for the
BEM conduction solution in the solid. Subsequently, the computed heat flux, in
terms of U, is scaled to provide the heat flux which is in turn used as an input
boundary condition for the flow-field.

3. Field solver solution algorithms
A brief description of the Glenn-HT code is given in this section. Details of the
code and its verification in turbomachinery application can be found in Ameri
et al. (1997), Heidmann et al. (2002), Rigby et al. (1997), Steinthorsson et al. (n.d.,
1993). The heat conduction equation is solved using the BEM.

3.1 Navier-Stokes solver
Glenn-HT uses a cell-centered FVM to discretize the NS equations. Equation (1),
is integrated over a hexahedral computational cell with the nodal unknowns
located at the cell center (i, j, k). The convective flux vector is discretized by a
central difference supplemented by artificial dissipation as described in
Jameson et al. (1981). The artificial dissipation is a blend of first and third order
differences with the third order term active everywhere except at shocks and
locations of strong pressure gradients. The viscous terms are evaluated using
central differences. The overall accuracy of the code is second order (Heidmann
et al., 2002). The resulting finite volume equations can be written at every
computational node as

V i; j; k

dW�
~

i; j; k

dt
þ

~
q

i; j; k

2
~
d

i; j; k
¼
~
s

i; j; k
ð7Þ
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where W
�

~
i; j; k is the cell-volume averaged vector of conserved variables,

~
q

i; j; k

and
~
d

i; j; k
are the net flux and dissipation for the finite volume obtained

by the surface integration of equation (1), and
~
s

i; j; k
is the net finite source

term. The above is solved using a time marching scheme based on a fourth
order explicit Runge-Kutta time-stepping algorithm. The steady-state solution
is sought by marching in time until the dependent variables reach their
steady-state values, and, as such, intermediate temporal solutions are not
physically meaningful. In this mode of solving the steady-state problem,
time-marching can be viewed as a relaxation scheme, and local time-stepping
and implicit residual smoothing are used to accelerate convergence. A
multigrid option is available in the code. The code also adopts a multi-block
strategy to model complex geometries associated with the film-cooled blade
problems. Here, locally structured grid blocks are generated into a globally
unstructured assembly.

Glenn-HT adopts a k-v turbulence model, which integrates to the wall and
does not require maintaining a specified distance from the wall, as no wall
functions are used. The computational grid is sufficiently fine near the wall to
yield a y + value of less than 1.0 at the first grid point away from the wall. A
constant value of 0.9 is taken for the turbulent Prandlt number in all heat
transfer computations, while a constant value of 0.72 is used for the laminar
Prandtl number. Moreover, the temperature variation of the laminar viscosity
is taken as a 0.7 power law (Schlichting, 1979), and cp is taken as constant.

3.2 Heat conduction boundary element solution
The heat conduction equation reduces to the same governing Laplace equation
in the temperature or the Kirchhoff transform. In the boundary element
method, this governing partial differential equation is converted into a
boundary integral equation (BIE) (Banerjee, 1994; Brebbia and Dominguez,
1989; Brebbia et al., 1984), as

Cðj ÞTðj Þ þ

I
S

TðxÞq* ðx; j Þ dSðxÞ ¼

I
S

qðxÞT* ðx; j Þ dSðxÞ ð8Þ

where S(x) is the surface bounding the domain of interest, j is the source point,
x is the field point, qðxÞ ¼ 2k ›T=›n is the heat flux, T *(x, j ) is the so-called
fundamental solution, and q*(x, j ) is its normal derivative with ›/›n denoting
the normal derivative with respect to the outward-drawn normal. The
fundamental solution (or Green free space solution) is the response of the
adjoint governing differential operator at any field point x due to perturbation
of a Dirac delta function acting at the source point j. In our case, since the
steady-state heat conduction equation is self-adjoint, we have

k72T* ðx; j Þ ¼ 2dðx; j Þ ð9Þ
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Solution to this equation can be found by several means, see for instance
Kellogg (1953), Liggett and Liu (1983) and Morse and Feshbach (1953), as

T* ðx; j Þ ¼
1

4pkrðx; j Þ
in 3D ð10Þ

where r(x, j ) is the Euclidean distance from the source point j. The free term
C(j ) can be shown analytically to be:

Cðj Þ ¼

I
SðxÞ

2k
h ›T* ðx; j Þ

›n

i
dSðxÞ:

Moreover, introducing the definition of the fundamental solution in the above
equation, it can be readily determined that, in 3D, C(j ) is the internal angle
(in steradians) subtended at source point divided by 4p when the source point j
is on the boundary and takes on a value of one when the source point j is at
the interior.

In the standard BEM, the BIE is discretized using two levels of
discretization: Firstly, the surface S is discretized into a series of
j ¼ 1; 2; . . .;N elements DSj, traditionally accomplished using polynomial
interpolation, bilinear and biquadratic being the most common, and secondly,
the distribution of the temperature and heat flux is modeled on the surface, and
this is usually accomplished using the polynomial interpolation as well. It is
noted that the order of discretization of the temperature and heat flux need not
be same as that used for the geometry, leading to subparametric (lower order
than that used for the geometry), isoparametric (same order than that used for
the geometry), and superparametric (higher order than that used for the
geometry) discretizations. Moreover, the temperature and heat flux are
discretized using k ¼ 1; 2; . . .;NPE number of nodal points per element whose
location within the element j can be chosen to coincide with the location of the
geometric nodes leading to continuous elements or to be located offset from
the geometric nodes leading to discontinuous elements. We chose to employ
the bilinear discontinuous isoparametric elements as they provide high levels
of accuracy in computed heat flux values, especially at sharp corner regions
where first kind boundary conditions are imposed without resorting to special
treatment of corner points required by continuous elements (Kane, 1994;
Kassab and Nordlund, 1994). In this type of boundary element, the field
variables T and q are modeled with discontinuous bilinear shape functions
across each element, while the geometry is represented locally as continuous
bilinear surfaces. We also employed constant elements for the coarse grid
solution as will be discussed later (Figure 2).

The discretized BIE is collocated at each of the boundary nodes ji and there
results
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CðjiÞTðjiÞ þ
XN

j¼1

XNPE

k¼1

Hk
ijT

k
j ¼

XN

j¼1

XNPE

k¼1

G k
ijq

k
j ð11Þ

where

Hk
ij ¼

I
DSj

q* ðx; jiÞM
kðh; z Þ dSðxÞ

and

G k
ij ¼

I
DSj

T* ðx; jiÞM
kðh; z Þ dSðxÞ

are evaluated numerically via Gauss-Legendre quadratures with special
adaption when evaluating the integrals on DSi and heuristic adaptive

Figure 2.
Constant and bilinear
isoparameteric
discontinuous boundary
elements used in analysis
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quadratures for elements that are close to the node of interest, and M k(h, z ) are
the discontinuous shape functions used to model T and q, whose nodes located
at an off-set position of 12.5 percent from the edges of the element. Upon
assembly of the collocated BIEs, the following algebraic form is obtained:

½H �{Ts} ¼ ½G�{qs} ð12Þ

Here the influence matrices [H ] and [G ] are evaluated numerically using
quadratures. Once the boundary conditions are specified, the above is
re-arranged in the standard form ½A�{x} ¼ {b}; and the ensuing equations are
solved by direct or iterative methods. In a fully conjugate solution using the
algorithm described in this paper, these BEM equations are solved subject to
the following boundary condition at external and internal bounding walls,
which are in contact with the fluid and denoted by Gconjugate:

TsjGconjugate
¼ Tf ð13Þ

In the reduced periodic 3D computational model to be discussed in the example
section, adiabatic conditions are also imposed at the flowfield periodic surfaces
in the spanwise direction, i.e. there

qs ¼ 0 ð14Þ

Once these equations are solved, the heat flux is known at all surface nodes.
This is the sought-after quantity in the CHT algorithm to be shortly outlined. In
the case, where the conduction problem is solved without further treatment, the
basic BEM code had options of using an LU decomposition for small numbers
of equations and a GMRES iterative solver with an incomplete LU (ILU)
pre-conditioning for large numbers of equations. When the number of
equations gets very large, storage becomes an important issue, as the
coefficient matrix is fully-populated. We will discuss an effective treatment of
such problems in a later section.

3.3 CHT algorithm
The Navier-Stokes equations for the external fluid flow and the heat conduction
equation for heat conduction within the solid are interactively solved to
steady-state through a time-marching algorithm. The surface temperature
obtained from the solution of the Navier-Stokes equations is used as the
boundary condition of the BEM for the calculation of heat flux through
the solid surface. This heat flux is in turn used as a boundary condition for the
Navier-Stokes equations in the next time-step. This procedure is repeated until
a steady-state solution is obtained. In practice, the BEM is solved at every few
cycles of the FVM to update the boundary conditions, as intermediate solutions
are not physical in this scheme. In the calculations carried out in this study,
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BEM solution was run for every ten cycles of the finite volume solver. This is
referred to as the TFFB coupling algorithm as outlined below:

(1) FVM Navier-Stokes solver:
. begins with initial adiabatic boundary condition at solid surface;
. solves compressible NS for fluid region;
. provides temperature distribution to the BEM conduction solver after

a number of iterations;
. receives flux boundary condition from the BEM as input for next set

of iterations.

(2) BEM conduction solver:
. receives temperature distribution from the FVM solver;
. solves steady-state conduction problem;
. provides flux distribution to the FVM solver.

The transfer of heat flux from the BEM to the FVM solver is accomplished as

q ¼ bqBEM
old þ ð1 2 bÞqBEM

new ð15Þ

with an under-relaxation is used setting the parameter b as 0.2 in all reported
calculations. The choice of the relaxation parameter is through trial and error.
In certain cases, it has been our experience that a choice of larger relaxation
parameter can lead to nonconvergent solutions (Bialecki et al., 2001). The
process is continued until the NS solver converges and wall temperatures and
heat fluxes converge, i.e. until equation (6) is satisfied within a set tolerance

jj
~
T

f
2

~
T

s
jj , 1T

jj
~
q
f

2
~
q

s

jj , 1q

ð16Þ

where the tolerances 1T and 1q are taken as 0.001.
It should be noted that alternatively the flux could be specified as a

boundary condition for the BEM code leading to a flux forward temperature
back (FFTB) approach. However, when a fully conjugate solution is
undertaken, this would amount to specify second kind boundary conditions
completely around the surface of a domain governed by an elliptic equation,
resulting in a nonunique solution. The TFFB algorithm avoids such a situation.

3.4 Interpolation between BEM and FVM grids
An issue arises in information transfer between the CFD and the BEM as there
exists a significant difference in the levels of discretization between the two
meshes in a typical CHT simulation. Accurate resolution of the boundary layer
requires a FVM surface grid, which is much too fine to be used directly in the
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BEM. A much coarser surface grid is typically generated for the BEM solution
of the conduction problem. The disparity between the two grids requires a
general interpolation of the surface temperature and heat flux between the two
solvers as it is not possible in general to isolate a single BEM node and identify
a set of nearest FVM nodes. Indeed in certain regions where the CFD mesh is
very fine, a BEM node can readily be surrounded by ten or more FVM nodes.

A distance-weighted interpolation, reminiscent of radial basis function
(RBF) interpolation (Partridge et al., 1992), is adopted for the transfer of
temperature and flux values between the BEM and the CFD grids. Consider
Figure 3(a), where the location of a BEM node is identified on the right-hand
side by a star-like symbol. Let us consider the problem of transferring the
temperature from the FVM grid to the BEM grid. Let us denote the position of
the BEM node of interest by ~ri; and the location of an FVM node by ~rj: The
radial distance from every FVM node to the BEM node of interest is then
rij ¼ j~rj 2 ~rij: Let us suppose that the number of all FVM surface nodes lying
within a ball of radius Rmax centered about ~r is Nball. Moreover, let us denote
two cases. In case I, all rij.1 and in case II, there is an FVM node located at ~rj;1

Figure 3.
Transfer of nodal values

from FVM and BEM
(and back) independent

surface meshes is
performed with a

distance weighted radial
interpolation
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such that rij # 1, where 1 is a tolerance. Then, the value of the temperature at
the BEM node ~rj is evaluated as

TBEMð~riÞ ¼

XNball

j¼1

TCFDð~riÞ

rij

XNball

j¼1

1

rij

for case I

¼ TCFDð~rj;1Þ for case II

ð17Þ

In all calculations, the maximum radius Rmax of the sphere is set to 2.5 percent
of the maximum distance within the solid region and 1 is set to Rmax£10220.
These limits may be adjusted to suit the problems at hand.

4. A domain decomposition strategy for BEM models of large-scale
three-dimensional heat conduction problems
As mentioned, the BEM is ideally suited for the solution of linear and
non-linear heat conduction problems and is particularly a advantageous
numerical method due to its boundary-only feature, however, the coefficient
matrix of the resulting system of algebraic equations is fully populated. For
large-scale 3D problems, this poses very serious numerical challenges due to its
large storage requirements and iterative solution of large sets of non-sparse
equations. This problem has been approached in the BEM community by one
of the two approaches: one is the artificial subsectioning of the 3D model into a
multi-region model in conjunction with block-solvers reminiscent of the FEM
frontal solvers (Bialecki et al., 1996; Kane et al., 1990) and (2) the adoption of
multipole methods in conjunction with the GMRES nonsymmetric iterative
solver (Greengard and Strain, 1990; Hackbush and Nowak, 1989). The first
approach of domain decomposition (or subsectioning) produces a sparse block
coefficient matrix that is efficiently stored and has been successfully
implemented in commercial codes such as BETTI and GPBEST in the context
of continuous boundary elements. However, the method requires generation of
complex data-structures identifying connecting regions and interfaces prior to
analysis. The second approach is very efficient, however, it requires complete
re-writing of the BEM code to adopt multipole formulation. Recently, a novel
technique using wavelet decomposition has been proposed to reduce matrix
storage requirements without a need for major alteration of traditional BEM
codes (Bucher and Wrobel, 2000).

We propose to adopt the first approach, however, we do not use a block
solver but rather a region-by-region iterative solver. Although, it was reported
in the literature that this process sometimes has difficulty in converging the
non-linear problems (Chima, 1996; Azevedo and Wrobel, 1988), it is shown that
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the process converges very efficiently in the linear case and can offer very
substantial savings in memory. Moreover, the technique does not require any
complex data-structure preparation. Indeed, the approach is somewhat
transparent to the user, a significant advantage in coupling the BEM to
other field solvers. It should be noted that this subsectioning method is under
current development and has not yet been integrated into the CHT solver at the
point of writing this paper, and thus the technique along with an example of 3D
conduction solution is presented herein with this explicit caveat.

In the standard BEM, if N is the number of boundary nodes used to
discretize the problem, the number of floating point operations (FLOPS)
required to arrive at the algebraic system is proportional to N 2 as well as direct
memory allocation also is proportional to N 2. Enforcing imposed boundary
conditions, yields

½H�{T} ¼ ½G�{q} ) ½A�{x} ¼ {b} ð18Þ

where {x} contains nodal unknowns T or q, whichever is not specified in the
boundary conditions. The solution of the algebraic system for the boundary
unknowns can be performed using a direct solution method such as LU
decomposition, requiring proportional to N 3 FLOPS or iterative methods such
as bi-conjugate gradient or general minimization of residuals that, in general,
require FLOPS proportional to N 2 to achieve convergence. In 3D problems of
any appreciable size this approach is computationally prohibitive and leads to
enormous memory demands.

If a domain decomposition solution process is adopted instead, the domain
is decomposed into K subdomains and each one is independently discretized
and solved by the standard BEM while enforcing continuity of temperature
and heat flux at the interfaces. It is worth mentioning that discretization of
neighboring subdomains does not have to be coincident, this is, at the
connecting interface, boundary elements and nodes from the two adjoining
sub-domains are not required to be structured following a sequence or
particular position. The only requirement at the connecting interface is that it
forms a closed boundary with the same path on both sides. The information
between the neighboring sub-domains separated by an interface can be
passed through an interpolation.

The process is shown in two-dimension in Figure 4, with a decomposition
four ðK ¼ 4Þ subdomains. The boundary value problem is solved
independently over each subdomain where initially, a guessed boundary
condition is imposed over the interfaces in order to ensure the well-posedness of
each subproblem. The problem in subdomain V1 is transformed into

72TV1
ðx; yÞ ¼ 0 ) ½HV1

�{TV1
} ¼ ½GV1

�{qV1
} ð19Þ

The composition of this algebraic system requires (n 2) FLOPS where n is the
number of boundary nodes in the subdomain as well as (n 2) for direct memory
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allocation. This new proportionality number n is roughly equivalent to n <
2N=K þ 1; as long as the discretization along the interfaces has the same level
of resolution as the discretization along the boundaries. Direct memory
allocation requirement for later algebraic manipulation is now reduced to a
proportion of n 2 as the influence coefficient matrices can easily be stored in
ROM memory for later use after the boundary value problems on remaining
subdomains have been effectively solved. For the example shown here, where
the number of subdomains is K ¼ 4; the new proportionality value n is
approximately equal to n<2N/5. This simple multi-region example reduces the
memory requirements to about n2=N 2 ¼ ð4=25Þ ¼ 16 percent of the standard
BEM approach.

The algebraic system for subdomain V1 is re-arranged, with the aid of given
and guessed boundary conditions, as:

½HV1
�{TV1

} ¼ ½GV1
�{qV1

} ) ½AV1
�{xV1

} ¼ {bV1
} ð20Þ

Now, the solution of the new algebraic system of subdomain V1 requires a
number FLOPS proportional to n3=N 3 ¼ ð8=125Þ ¼ 6:4 percent of the
standard BEM approach if a direct algebraic solution method is employed,
or a number of FLOPS proportional to n2=N 2 ¼ ð4=25Þ ¼ 16 percent of the
standard BEM approach if an indirect algebraic solution method is employed.
For both, FLOPS count and direct memory requirement, the reduction is
dramatic. However, as the first set of solutions for the subdomains were
obtained using guessed boundary conditions along the interfaces, the global
solution needs to follow an iteration process and satisfy a convergence criteria.

Globally, the FLOPS count for the formation of the algebraic setup for all K
subdomains must be multiplied by K, therefore, the total operation count for
the coefficient matrices computation is given by: Kn2=N 2 < 4K=ðK þ 1Þ2:
For this particular case with K ¼ 4; Kn2=N 2 ¼ 16=25 ¼ 64 percent of the
standard BEM approach. Moreover, the more significant reduction is revealed
in the RAM memory requirements as only the memory needs for one of the
subdomains must be allocated at a time. The rest of the coefficient matrices for
the remaining subdomains can be temporarily stored in ROM memory until
access and manipulation is required or if a parallel strategy is adopted the
matrices for each subdomain are stored by its assigned processor. Therefore,
for this case of K ¼ 4; the true memory reduction is n2=N 2 ¼ 4=25 ¼
16 percent of the standard BEM.

Figure 4.
BEM single region
discretization and four
domain BEM
decomposition
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With respect to the algebraic solution of the system of equation (20), if a
direct approach as the LU factorization is employed for all subdomains, the LU
factors of the coefficient matrices for all subdomains can be computed only
once at the first iteration step and stored in ROM memory, or on disc, for later
use during the iteration process for which only a forward and a backward
substitution will be required. This feature allows a significant reduction in the
operational count through the iteration process until convergence is achieved,
as only a number of floating point operations proportional to n as opposed to
n 3 is required at each iteration step. To this computation time the access to
ROM memory is added at each iteration step, which is usually larger than
access to RAM. Alternatively, if the overall convergence of the problem
requires few iterations, iterative solvers such as GMRES offer an efficient
alternative.

Providing a good initial guess is crucial to the success of any iteration.
To this end, first we typically solve the problem using a coarse grid constant
model (Figure 2) obtained by collapsing the nodes of the discontinuous bilinear
element to the centroid, and supply that model with a physically-based initial
guess for interface temperatures. An efficient initial guess can be made using a
physically based 1D heat conduction argument for every node on the external
surfaces to every node at the interface. The initial guess for any interfacial node
is provided algebraically as:

Ti ¼

XNT

j¼1

BijTj 2
XNq

j¼1

BijRijqj þ
XNh

j¼1

BijH ijT1j

H ij þ 1

Si 2
XNT

j¼1

Bij þ
XNh

j¼1

Bij Hij

H ij þ 1

ð21Þ

where NT, Nq, and Nh are the number of first, second, and third kind boundary
conditions specified at the external (non-interfacial) surfaces and

Bij ¼
Aj

jrijj
; Rij ¼

~rij · n̂j

k
; Hij ¼

hj

k
ð~rij · n̂jÞ; Si ¼

XN

j¼1

Aj

jrijj
ð22Þ

with N ¼ NT þ Nq þ Nh; the thermal conductivity of the medium is k, the
film coefficient at the j-th convective surface is hj, the outward-drawn normal to
any surface is n̂j, the position vector from the interfacial node i to the external
surface node j is ~rij and its magnitude is rij ¼ j~rijj; while the area of element j
denoted is readily computed as:

Aj ¼

I
Gj

dGðx; y; zÞ ¼

Z þ1

21

Z þ1

21

j J jðh; zÞj dh dz:
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Once the initial temperatures are imposed as boundary conditions at the
interfaces, a resulting set of normal heat fluxes along the interfaces will be
computed. These are then non-symmetrically averaged in an effort to match
the heat flux from neighboring subdomains. Considering a two-domain
substructure, the non-symmetric averaging at the interface is explicitly
given as,

qI
V1

¼ qI
V1

2
qI
V1

þ qI
V2

2
and qI

V2
¼ qI

V2
2

qI
V2

þ qI
V1

2
ð23Þ

to ensure the flux continuity condition qI
V1

¼ 2qI
V2

after averaging.
Compactly supported radial basis interpolation can be employed for the flux
average to account for the unstructured grids along the interface from
neighboring subdomains.

Using these fluxes, the BEM equations are again solved leading to
mismatched temperatures along the interfaces for neighboring subdomains.
These temperatures are interpolated, if necessary, from one side of the interface
to the other side using a compactly supported radial basis functions to account
for the possibility of interface mismatch between the adjoining substructure
grids. Once this is accomplished, the temperature is averaged out at each
interface. Illustrating this for a two-domain substructure, again we have for
regions 1 and 2 interfaces,

TI
V1

¼
TI

V1
þ TI

V2

2
þ R 00qI

V1
and TI

V2
¼

TI
V1

þ TI
V2

2
þ R 00qI

V2
ð24Þ

in general, to account for a case where a physical interface exists and a thermal
contact resistance is present between the connecting subdomains, where R 00 is
the thermal contact resistance imposing a jump on the interface temperature
values. These now matched temperatures along the interfaces are used as the
next set of boundary conditions.

The iteration process is continued until a convergence criterion is satisfied.
A measure of convergence may be defined as the L2 norm of mismatched
temperatures along all interfaces as:

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K · N I

XK

k¼1

XN I

i¼1

ðT I 2 TI
uÞ

2

vuut ð25Þ

This norm measures the standard deviation of BEM computed interface
temperatures T I and averaged-out updated interface temperatures TI

u . The
iteration routine can be stopped once this standard deviation reaches a small
fraction 1 of DTmax, where DTmax is the maximum temperature span of the
global field. It is noted, that we refer to an iteration as the process by which an
iterative sweep is carried out to update both the interfacial fluxes and
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temperatures such that the above norm may be computed. We set 1 ¼ 5 £ 1023

in our computations.

5. Numerical results and discussion
We now present results of a full conjugate solution of a film-cooled blade under
operating conditions, which match a planned experiment at NASA Glenn
Research center and assumes periodicity in the spanwise direction for one pitch
of film-cooling hole patterns. We compare results of this simulation to those
obtained from the standard two temperature method. This simulation uses the
standard BEM approach to heat conduction. We also present results from a
heat conduction simulation for a cooled turbine vane using the subsectioning
method described in this paper.

5.1 CHT simulation of a 3D film-cooled turbine blade
Film cooling is commonly used in turbine designs to produce a buffer layer of
relatively cool air between the turbine blade and the hot freestream gas in the
first and second rows of blades and vanes. The CHT computation is carried out
on a computational model of a realistic film-cooled turbine vane according to
the three-dimensional vane geometry including plena and film holes and is
based on a Honeywell film-cooled engine design, (Heidmann et al., 2002).
The geometry of this test vane is based on the engine vane midspan
coordinates, and is scaled up by a factor of 2.943 to allow matching of engine
exit Mach number (0.876) and exit Reynolds number (2.9£ 106 based on true
chord) with atmospheric inlet conditions. The test vane has a true chord of
0.206 m. Since the test vane is of constant cross-section, only one spanwise
pitch of the film hole pattern was discretized, with periodicity of the flow-field
enforced at each end. This simplification assumes no effect of endwalls, but
greatly reduces the number of grid points required to model the vane. However,
the thermal boundary conditions enforced at these ends in the conduction
analysis were adiabatic. The vane has two plena, which feed 12 rows of film
cooling holes as well as trailing-edge ejection slots, (Figure 5). Trailing edge
ejection is blocked in the computation as the planned experiment has no slot
cooling. Detailed geometrical data for each row of film holes as well as hole
distribution are provided in Heidmann et al. (2002). A multi-block grid
approach is adopted to model this complex geometry and generated the FVM
grid using the topology-based algebraic grid-generation program GridProe
(Program Development Corporation, 1997) with the final grid consisting of
140 blocks and a total of 1.2£ 106 finite volume computational cells. The FVM
grid consists of 20 cells across both the inlet and outlet boundaries, 60 cells on
the periodic boundary, over 200 cells around the vane, and 44 cells from the
vane to the periodic boundary.

A blade-to-blade view of the FVM grid is shown in Figure 6. Figure 7 shows
the FVM grid in the leading edge region of the vane.
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Figure 5.
Film-cooled blade profile
used in the CHT
simulation

Figure 6.
Blade-to-blade
computational grid
cross-section
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The flow conditions for all simulations use a free-stream inlet flow to the vane
at an angle of 08 to the axial direction, with all temperatures and pressures
normalized by the inlet stagnation values of 3,109 R and 10 atmospheres,
respectively. The inlet turbulence intensity is set at 8.0 percent and the
turbulence scale is 15.0 percent of vane true chord. Other inflow quantities are
set by means of the upstream-running Riemann invariant. The vane
downstream exit flow is defined by imposing a constant normalized static
pressure of 0.576, which was empirically determined to yield a desired exit
Mach number of 0.876. Periodicity was enforced in both the blade-to-blade and
spanwise directions based on vane and film hole pitches, respectively.
Moreover, in order to maintain a true periodic solution, inflow to the plena was
provided by defining a region of each plenum wall as an inlet and introducing
uniform flow normal to the wall. In Figure 6, these regions are shown to lie on
either side of the internal wall that separates the two plena. In practice, there
will be spanwise flow in the plenum, but bleed of the plenum flow into the film
holes results in a spanwise-varying mass flow rate and static pressure, which
would violate spanwise periodicity imposed in this particular reduced
computational model. The non-dimensionalized inflow stagnation temperature
to the plena was 0.5, corresponding to a coolant temperature of 1554.5 R. The
velocity was fixed to the constant value required to provide the design mass
flow rate to each plenum, and static pressure was extrapolated from the
interior. The inflow patch for each plenum was defined to be sufficiently large
to yield very low inlet velocities (Mach number, 0.05), allowing each plenum
to approximate an ideal plenum. All solid walls were imposed with a no-slip

Figure 7.
FVM grid in the leading
edge region of the blade
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boundary condition. The blade metal material is taken as Inconel with a
conductivity of kblade ¼ 1:34 Btu/h in R taken at 2174.9 R which is estimated to
be the average blade temperature.

The FVM metal surface grid consists of 38,000 cells at the 4th level of
multi-grid. The grid was coarsened to generate a BEM grid of 13,000 bilinear
cells with 52,000 nodal unknowns. Two cases are computed in the numerical
simulation in order to obtain the metal temperature:

(1) The traditional two-temperature approach, whereby two different
isothermal wall boundary conditions extended to all wall surfaces, including
the film hole surfaces and plenum surfaces. Two solutions were generated with
constant wall temperatures Tw of Tw;1 ¼ 2174:9 R and Tw;2 ¼ 2485:6 R
imposed on all blade surfaces. The flow-field was computed from the plena
through the cooling holes and over the blade. The predicted wall heat fluxes at
each node q00w computed from each of these isothermal solutions were used to
simultaneously solve adiabatic wall temperature, Taw, and heat transfer
coefficient, h, referenced to the computed adiabatic wall temperature, under the
assumption that Taw and h are independent of the wall temperature. That is at
each node we have

q00w ¼ hðTw;1 2 TawÞ

q00w ¼ hðTw;2 2 TawÞ

ð26Þ

In turn, these film coefficient and associated adiabatic wall distributions were
used in the BEM to compute metal temperatures.

(2) A full CHT solution was carried out using the same grids and boundary
conditions as above except at the blade surface where conjugate conditions
were imposed. The conjugate solutions converged in 1,000 iterations with a
BEM conduction calculation performed each ten FVM iterations. The BEM
code was written as a subroutine to the Glenn-HT code and subroutines were
coded to exchange information between the two codes in terms of the FVM and
BEM grids as well as boundary condition information. The Glenn-HT code was
modified to allow non-isothermal boundary condition specification.

All computations were performed at NASA Glenn Research Center on an
SGI Origin 2000 cluster with 32 processors. Flow computations were carried
out and considered converged when residuals were driven below 1025. Results
of the blade surface temperatures predicted by the simulations are shown in
Figure 8 for the CHT solution and in Figure 9 for the two constant temperature
approaches. The two temperature distributions are markedly different with a
temperature span of DT ¼ 1720 2 2420 R across the surface of the blade while
the CHT solution predicted a temperature span of DT ¼ 1620 2 2620 R across
the blade. In addition to CHT computations predicting lower minimum (100 R
colder) and higher maximum temperatures (200 R hotter), the distribution of
cold and hot regions are quite different as is evident from the surface plots.
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Figure 8.
Blade surface

temperature predicted by
the CHT solution

Figure 9.
Blade surface

temperature predicted by
the BEM using h and

Taw provided from the
two-temperature

approach
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For instance, with conduction taken into consideration in the CHT simulation,
the thin trailing regions are seen to reach higher temperatures than predicted
by the isothermal approach, while the forward plenum region is seen to be
effectively cooler. This has severe implications in materials design and
subsequent thermal stress analysis of the blade carried out using these metal
temperatures.

Results are now presented for a simulation using the subsectioning iterative
method for a pure heat conduction problem. Here, a blade with a 10 cm chord
and 14 cm in the spanwise direction is taken. The blade is cooled by two plena
(Figure 10). The blade is discretized using GridProTM (Program Development
Corporation, 1997) into six subsections with a surface grid of a total of nearly
6,000 bilinear elements or nearly 24,000 degrees of freedom (Figure 11). Each
block is kept at a discretization level nearer to 1,000 bilinear boundary
elements. Adiabatic conditions are imposed on the top and bottom surfaces of
the blade. Convective boundary conditions are imposed on all other surfaces.
The film coefficient on the outer surface of the blade is taken as
h ¼ 1; 000 W=m2K with the reference temperature taken as 1,000 K, while
the cooling plena are both imposed with film coefficients h ¼ 500 W=m2K with
the reference temperature taken as linearly varying from 300 K to 400 K in the
increasing z-direction of the cooling plenum closest to the leading edge, while

Figure 10.
BEM grid for 3D cooled
blade

HFF
13,5

604



linearly varying from 500 K to 400 K in the decreasing z-direction of the cooling
plenum closest to the trailing edge.

All computations were performed on a Pentium 4, 1.8 GHz PC with 512 MB
800 MHz RDRAM. The initial guess using equation (21) alone without the
coarse grid model provided an excellent starting point for the iteration, which
converged on 8 steps to provide an L2 iterative norm, defined in equation (25),
of 0.00011698. It took 34,905 s to set up the matrices, obtain and store their LU
factors, and 813 s to solve the problem iteratively. The resulting temperature
plots shown in Figures 11 and 12 reveal a very smooth distribution across all
blocks. The resulting surface heat fluxes are presented in Figure 13 revealing a
very smooth distribution from a minimum of 2180,000 W/m2K to a maximum
of 230,000 W/m2K. It should be noted that the subsectioning approach is ideally
suited for parallel implementation. The authors are pursuing this avenue prior
to integration of the algorithm with the CHT solver. This concludes the
example section.

6. Conclusions
A combined BEM/FVM approach using the TFFB conjugate method has been
implemented in a 3D context to model CHT in cooled turbine blades. As a

Figure 11.
Domain decomposition
of a 3D plenum-cooled

turbine blade
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boundary-only grid is used by the BEM, the computational time for the heat
conduction analysis is insignificant compared to the time used for the NS
analysis. The proposed method produces realistic results without using
arbitrary assumptions for the thermal condition at the conductor surface.
Results from a CHT numerical simulation of a 3D film-cooled blade section are
presented and are compared with those obtained from the standard approach of
a two temperature model. A significant difference in the level and distribution
of the metal temperatures is found between the two models. These differences
have severe implications in materials design and subsequent thermal stress
analysis of the blade carried out using these metal temperatures. In practice,
turbomachinery components such as modern cooled turbine blades often
contain several hundred film cooling holes and intricate internal serpentine
cooling passages with complex convective enhancement configurations such as
turbulating trip strips. This poses a real computational challenge to BEM
modeling. The subsectioning iterative approach outlined in this paper offers
promising technique to address this problem. It is proposed to extend the
current work by implementing the parallel implementation of iterative domain

Figure 12.
Converged surface
temperature
distribution (K)
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decomposition approach for the BEM in order to address large-scale CHT
problems and results of such simulations will soon be reported elsewhere
(Divo et al., 2003; Heidmann et al., 2003).
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